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SUMMARY 

Interest in the use of supercomputers for the direct numerical calculation of turbulence prompts the 
development of efficient numerical techniques so that calculation at higher Reynolds numbers might be 
made. This paper presents an efficient pseudo-spectral technique, similar to but different from others that 
have recently appeared, for the calculation of momentum and heat transfer to a constant-property, turbulent 
fluid in a two-dimensional channel with walls at different, uniform temperature. The code uses no 
empiricism, although periodic boundary conditions are used for fluctuating quantities in the streamwise and 
spanwise directions. 

Calculations were made for a Prandtl number of 072 and Reynolds number based on friction velocity and 
channel half-height of 180 or 2800 based on channel half-height and average velocity. Calculations of mean 
velocity profile, turbulence intensities, skewness, flatness, Reynolds stress and eddy diffusivity of heat near 
a wall compare favourably with experimental results. Representative contour plots of the temperature field 
near the wall and of the spanwise and streamwise two-point velocity correlations are given. 

Deficiencies are that the calculation requires many hours on a fast computer with a large high-speed 
memory and that the grid size in each direction for appropriate resolution is approximately proportional to 
the square of the Reynolds number and to the Prandtl number raised to some power greater than one. 

KEY WORDS Numerical simulation Turbulence Heat transfer 

1. INTRODUCTION 

As part of a project to investigate the effect of wall roughness on heat transfer, we developed 
a Navier-Stokes equation solver to calculate the velocity field for the problem of heat transfer 
through a turbulent fluid in a rectangular channel. Others have developed similar codes, but ours 
is quite efficient and contains some differences that may be useful. In the past 20 years much 
research has been done on the use of ‘models’ of turbulence to calculate turbulent flow patterns in 
a variety of geometries. These models have been developed as a means of solving the closure 
problem-the generation of moments of higher order upon averaging the transport equation for 
any given moment. The most well known of these models is the k--E model, which contains 
transport equations for k, the local turbulent kinetic energy, and E, the local mean rate of energy 
dissipation. Reynolds stress models are much more complicated but give superior results and 
have recently received more attention than k-c models. The models do not avoid empiricism, for 

027 1 -2091/93/121051-28$19.O0 
0 1993 by John Wiley & Sons, Ltd. 

Received 8 September 1992 
Revised 28 December 1992 



1052 J. RUTLEDGE AND C. A. SLEICHER 

a number of constants and functions must be specified or modelled. The primary advantage of 
these models is that they can sometimes be extrapolated from one geometry to another, whereas 
mixing-length and eddy-viscosity models are useful only when the eddy viscosity has been 
empirically determined in a similar geometry, Ferziger' has cautioned against reliance on the k-& 
model in some cases, and it is known that the model does not work well near solid boundaries. 
Moreover the closure empiricisms in these models are based on smooth boundary experimental 
data, and we wish to investigate the effect of a pattern of roughness on the wall. 

An alternative to the analysis of turbulence by modelling the terms in the higher-order 
transport equations is direct simulation. In this method empiricism is avoided and all three 
components of the complete, time-dependent Navier-Stokes equations are solved numerically in 
a three-dimensional grid in space. The vast amount of data so generated can then be averaged as 
desired to obtain quantities such as the profiles of average velocity, temperature, pressure and 
stress. The disadvantage, of course, is the enormous computational resources required and the 
difficulty, often, in obtaining numerical stability and convergence. To obtain satisfactory results 
at reduced computational effort has been the subject of many papers, and a few of them are 
referred to here. 

The tool that makes direct numerical calculation of turbulence feasible is spectral analysis. It 
was apparently Orszag and Peterson' who first introduced the idea of applying the spectral 
method for solving problems of turbulence, a suggestion that met with much skepticism at the 
time. The spectral method involves approximating a function with a series that is required to 
satisfy the differential equation exactly at specified collocation points, and it  can sometimes 
require an order of magnitude less computer time and storage than finite difference methods. 
Much of the speed of the method is due to the use of fast Fourier transforms. 

The application of spectral methods to wall-bounded turbulence apparently began in 1980 with 
the paper by Orszag and Kells3 on transition to turbulence in Poiseuille and plane Couette flow. 
Application of spectral techniques to fully developed channel flow has been reported by Moin 
and Kim,435 Moser and Moin6 and Kim et aL7 A little later, Lyons et ~ 1 . ~ 3 ~  published two papers 
on essentially the same problem as the one studied in the present paper. The principal differences 
are the Reynolds number (300 vs. our 360), the Prandtl number (1.0 vs our 0.72), the size of the 
grid (up to 128 x 128 x 65 vs. our 144 x 144 x 65), significant differences in the computational 
algorithms, and differences in what quantities were calculated. The principal results, however, are 
in quite close agreement. 

The starting point for all of the foregoing studies is the incompressible Navier-Stokes equation. 
Orszag" has shown that the usual Eulerian form of the Navier-Stokes equation does not 
conserve kinetic energy when spectral representations are used. However, by use of a vector 
identity, the Navier-Stokes equations can be converted into the following form, which conserves 
energy to machine precision for most types of discretization of differential operators:' 

au 1 
-=u x w -VZ +- V'U + F ,  
at Re 

where 

w = v x u .  

U'U 
n = p + - - - ,  2 

F =external body forces. 

This form of the Navier-Stokes equation was also used in the previous investigations. 
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The time-stepping algorithm 

Since the equations to be solved are time-dependent, some efficient technique must be used for 
advancing the velocity field in time. The algorithm used here and by most other investigators is 
mainly due to Chorin." A good summary of the technique has been given by Leonard and 
Wray.12 The method involves defining a set of intermediate, non-physical variables that permit 
breaking each time step into a set of four intermediate, fractional steps. The intermediate 
variables are only temporarily stored and are used only to get the next step in the velocity field. In 
order to complete a time step, each of the fractional steps must be solved in sequential order, and 
two of those steps require integrating differential equations. This has lead to a controversy on 
how to handle the boundary conditions on one of the equations, the equation for the pressure, 
which contains one of the intermediate variables. Some authors used actual boundary conditions 
on the intermediate variables, but Kim and Moin' realized, perhaps before anyone else, that 
using actual boundary conditions on the intermediate, non-physical variables creates problems, 
and they recommended resolving the problem with a technique that uses a staggered grid for the 
pressure. However, Abdallah14 has shown that the use of staggered grids for the pressure field 
violates a compatibility condition (Green's theorem) that stems from the derivation of the 
equation for the pressure. 

Two other methods for attacking the pressure equation are evidently correct, though each 
leads to some increased computational effort. The first was first published by Ku et a1." and 
a similar technique was used by Lyons et a1.8*9 In this method the boundary condition on the 
pressure equation, or second step, comes from applying the Navier-Stokes and continuity 
equations at the boundary. Unfortunately, the results from the fourth step are required to 
calculate boundary condition on the pressure step, and this coupling destroys the sequential 
nature of the splitting method. However, since coupling is only through the boundary conditions 
and not through the whole field, a small Green's function or influence matrix can be precalculated 
once for all time to determine the influence of the boundary conditions. With this matrix and 
making an extra pass through the last three steps in the splitting method, a nearly non-divergent 
velocity field can be calculated at each time step with but little extra computational effort. 

The second method to attack the pressure boundary condition problem, and the one used here, 
is to eliminate the pressure from the Navier-Stokes equations. An example of this technique has 
been given by Kim et aL7 

2. ANALYSIS 

The governing equations for our problem are the incompressible Navier-Stokes equation (l), and 
temperature equation 

where 

Pe = Pr Re. 

The external pressure gradient is taken to be constant and viscous dissipation is neglected. All 
physical properties are taken to be independent of temperature so that the velocity field can be 
calculated independently of the temperature field, i.e. the temperature is a passive scalar. The 
length scale for (1) and (2) is the half-height between the parallel plates, 6. The velocity scale is the 
friction velocity, ut, which is defined as ( r w / p ) l i 2  where rW is the mean shear at the wall and p is the 
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Figure 1. Geometry and nomenclature 

density. It is easily shown that the external pressure drop is related to z, so that F =  1 in (1). The 
time scale is the length scale divided by the velocity scale. The temperature is non-dimen- 
sionalized so that temperatures on the upper and lower boundaries are constant at 1 and - 1. 
With the given scaling the Reynolds number is u,6/v, where v is kinematic viscosity. The Prandtl 
number is a h ,  where a thermal difhsivity. 

These equations are applied to the simulation domain shown in Figure 1, which shows the 
nomenclature. Streamwise refers to the direction aligned with the pressure gradient, normal is the 
direction perpendicular to the walls, and spanwise is the direction parallel to the boundaries and 
perpendicular to the pressure gradient. These equations are the same as those used by Lyons et al. 
except that the symbols for the normal and spanwise directions are interchanged. 

Before (1) is discretized, it is cast in the form used by Kim et al.’ to eliminate the pressure. 
A derivation of the transformation has been given by RutledgeI6 

a 1 aw - V 2 w = - V 4 w + h 3 ,  with w, -on dD, 
at Re  d Z  

where 

h,=--(--+=)+($+$)H,. a aH1 a H z  
aZ ax 

a 1  
-g=-V2g+hg, with g on aD, 
at Re 

where 

d H ,  aH2  hg=--- 
ay ax ’ 

au av 
a y  dx’ 

Hi =(u x V x u ) ~  + Fi (Fi =external forces), 

g=--- 

(3) 

(4) 
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aw 
f+-=0, az 

au au 
ay  ax- g=--- (7) 

The symbol all  refers to a boundary condition and means on the border of the domain (the two 
planes). Note that g is the normal component of vorticity andfis a new variable introduced by 
splitting the equation of continuity into two parts. A disadvantage of this form is the required 
integration of the biharmonic operator in (3). To avoid dealing directly with it, we introduce 
a new intermediate variable, 4, and split the equation into two parts: 

a U  aU aw 
at Re ax ay az  (8) --- a4- I V 2 4 + h , ,  with 4 chosen on aD so that -+-+-=O on aD. 

where 
V 2 w = 4 ,  with w on aD. 

Discretization in time 

Equations (4) and (8) are now discretized in time by splitting them so that the non-linear terms 
are treated explicitly with a Runge-Kutta technique whereas the linear (or viscous) parts of the 
equations, which are operated on by the Laplacian operator, are treated implicitly with 
a Crank-Nicolson technique. These time-split equations are 

The non-linear (or convective) parts, h, and h3,  are treated explicitly by choosing the appropri- 
ate weighting CI and p. Since the non-linear parts are treated explicitly, the step size, At, must be set 
below a certain limit to avoid numerical instability. Most investigators choose a = 3/2 and p= 1/2, 
which is an Adams-Bashforth treatment. There is no known explicit method for applying this 
treatment to the convective diffusion equation that is stable when the Courant number, 

is greater than one, and it is usually assumed that CN< 1 is a necessary condition for stability. 
CN < 1, however, is not in general a sufficient condition for stability. 

A more elaborate scheme for choosing a and /3 was suggested by Wray and Hussaini." It 
involves breaking the time step into a set of fractional steps and cycling through a set of different 
fractions of the step size and of a and jl so that the non-linear part is integrated in the 
Runge-Kutta sense. Moreover, for the first set in the cycle, p can be forced to zero so only the 
solution at the nth time step is required to start the model. This gives one the freedom to adjust At 
each time the cycling reaches the first set of the cycle. Thus, the time step can be maximized to 
track the Courant number so that it can be kept just under its critical value. A good example of 
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Table I. Runge-Kutta-Wray integration constants 

Fractional 
step Y tl B 
Step 1 8/15 1 0 

Step 3 1 /3 9i4 514 
Step 2 2/15 25/8 - 17/8 

The fractional step size is y At, where At is the total step size 

the technique is given by Spalart." His choice of the fractional step sizes and weighting constants 
are given in Table I. The Rung-Kutta scheme is applied by cycling through a set of three 
different values of At,  c1 and fl shown in Table I. 

Spalartl* chose ,8 to be zero on the first step so the scheme is 'self-starting', and only one 
solution is required to start the time stepping. The constants were also chosen to give third-order 
accuracy in the non-linear part. (The Crank-Nicolson treatment gives second-order accuracy for 
the linear part of (4); so, third-order accuracy is over-kill.) This scheme gives a critical Courant 
number equal to the square root of 3. Thus, this scheme will be stable for a step size about 1-7 
larger than the maximum in the Adams-Bashforth method but a cost of 3 times more computa- 
tional work. The appeal of the method, however, is the ease with which the step size can be 
changed. In Spalart's scheme the step size can be set so that the Courant number is always nearly 
critical. 

Equations (9) and (10) are now simplified by grouping all of the n + 1 terms on the left-hand side 
and all other terms on the right-hand side: 

where 

where 

Spatial discretization in the streamwise and spanwise directions 

Since the turbulence is homogeneous in the streamwise and spanwise directions, the velocity 
components in those directions can be represented by Fourier series with periodic boundary 
conditions. Lyons et ~ 1 . ~  have pointed out that this assumption is valid as long as the domain of 
periodicity is large enough so that all two-point correlation functions become negligibly small 
within the domain. The periodic solution also relieves us of the problem of solving the in- 
flow-outflow mass balance required in the streamwise direction. 
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Equations (5)-(7), (12) and (13) are next transformed with respect to the homogeneous 
directions (x and y )  according to the following definition of the discrete Fourier transform, DFT: 

N 1 - 1  N2-1 

i t = O  i z = O  
u(kl k2,z)= 1 u(i l ,  i 2 ,  z) exp[ 2ni (%+*)I, a2N2 

where kl  and kz are multiplied by al and a2 when they do not appear as indicies. 

k l  and k2 so that (5)-(7), (12) and (13) become 
The streamwise and spanwise aspect ratios, al and t12, are embedded in the wave numbers 

1 2 g"+'-( i+k:+ki)gni l  = --fegRnsr with g"+' on do,, 

where 

At 
f = -  

2Re' 

f "+ = ikl u"+ + ik2 0"' (19) 

ik, u"+1- ik, v"+'. (20) 

Since the aspect ratio is embedded into the wave numbers, they are not necessarily integers. 
Note also that we have not changed the symbols but that all of the variables have been 
transformed and the independent variables have been changed from (x, y, z) to (k l ,  k 2 ,  2). 

Fast Fourier Transform (FFT) codes can be used to evaluate the DFTs, and they require 
N log,(N) multiplications to integrate a variable in a given direction of N grid points. The log 
base, q, is determined by the radix of the DFT, which is usually 2. Using a radix of 2, however, 
limits the choice of the number of grid points to powers of 2, a severe limitation that affected our 
choice of the FFT. The FFT we used was written by Tempert~n''-~' in Fortran. This FFT is 
multiradixed and allows N to be composed of factors 2,3 or 5. It vectorizes perpendicular to the 
direction being transformed, which means that when the FFT is being performed on the 
streamwise grid points, the code vectorizes with the spanwise points and vice versa. 

The variables in (15)-(20) are now complex-valued, which doubles the number of calculations 
needed to do the DFT integrations. However, since the transformed variables are real-valued, we 
gain a factor of two because of conjugational symmetry.22 With this symmetry the span of k, and 
k2 are - N,/2 to 0 and - N2/2 to N2/2- 1, where N1 and N2 are the number of grid points in the 
streamwise and spanwise directions. The result is that the total number of sets of equations to be 
solved is N1N2. Note that the use of Fourier transforms to evaluate derivatives is global or 
spectral in nature, i.e. when a derivative is taken in a homogeneous direction, the DFT causes 
every point in that direction to be involved in the evaluation of the derivative. 

The right-hand sides of (15) and (16) contain non-linear terms, which become difficult Fourier 
convolutions in Fourier space. Therefore, as was apparently first done by Fox and O r ~ z a g , * ~  we 
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carry out multiplications in real space and differentiations in Fourier space. Everytime a multipli- 
cation is to be done, the variables at each grid point are transformed into real space, multiplied, 
and transformed back into Fourier space to continue the integration. As is now well known, this 
procedure produces aliasing errors-rrors caused by truncation of higher modes that then affect 
the lower modes. However, Orszag'' showed that aliasing errors can be eliminated by a simple 
procedure. Solely for the purpose of evaluating the non-linear terms, zeros are appended to the 
Fourier series until it has 312 more terms . The series is then inverse transformed to a grid in 
physical space with 312 as many points. Multiplication is then done on that physical space mesh 
and the result transformed back to Fourier space and truncated to the original length. All terms 
that involve non-linear evaluations were de-aliased. 

For each wave-number pair, (15-20) can be solved independently of all other wave-number 
pairs. It is this wave-number pair decoupling that makes the computations feasible. The order in 
which (15H20) are solved is as follows. First, all right-hand side information ( g R H S  and &Hs) is 
evaluated using existing information. The Dirichlet boundary conditions on u"", on+' and w"+ 
as well as the Neumann condition on w"+' via the continuity equation are known. Next, (15) is 
solved by using (20) to get the boundary condition. Equations (16) and (17) are solved simultan- 
eously with the aid of a Green's function (discussed later) to set the Dirichlet condition on @+l so 
that the Neumann condition on w"+l has the proper value. Then f is evaluated via (18). 
Lastly, (19) and (20) are used to solve for u"+' and 0"'' algebraically through the equations 

It is easily seen that when the wave-number pair (kl, k , )  is (0, O), the solution for u"+l and u " + l  

is singular and must be treated separately. The equations of motion for this wave-number pair are 
identical to the equation of motion spatially averaged in the homogeneous directions and then 
Fourier transformed. Since the external pressure drop is a force appearing as an averaged force, 
the equations for the (0,O) mode are the only equations in which it appears. Since the external 
pressure gradient is the only force keeping the fluid in motion, the solution for this mode feeds 
energy to all the other modes. From the Fourier-transformed continuity equation and the 
condition of no mass transport through a solid boundary, it is evident that w"" for this mode is 
always zero for all z. We deal with this mode by solving the equations of motion as they are before 
pressure is eliminated. There is no need to eliminate the dynamic pressure from the (0,O) mode 
since the only equation in which it appears has already been solved (the w equation of motion). 
Thus, the solutions for the u and u velocities for the (0,O) mode are 

where 
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where 

We also give special treatment to any mode that contains the wave numbers - N1/2 or - N 2 / 2  
by omitting it from the solution, as is the standard practice, because it is an artefact of the DFT." 

Sputial dixcretizution in the normal direction 

The use of Fourier series to approximate the velocity distribution in the normal direction is 
unsatisfactory because of the inability of the expansion to converge uniformly at the channel 
boundaries (Gibbs phenomenon). LanczosZ4 suggested that a more useful approximation under 
these circumstances is series of Sturm-Liouville eigenfunctions. Therefore, the normal component 
of velocity is expanded in a Chebyshev series of the first kind, which is standard for normal 
integration in our type of p r ~ b l e m . ' ~  Unlike the evenly spaced grid points used in the homogen- 
eous directions, the grid points in the normal direction are more tightly spaced near the 
boundaries to accomodate the higher gradients there. The positions are obtained from the 
function zj= cos( j n / N 3 ) ,  wherej ranges from 0 to N,. Thus, with 65 points between walls located 
at - 1 and 1, the first point is located at z =  -000117 and the central points have an interval 
of 0.0483. 

The use of Chebyshev transforms to integrate the normal direction is basically sound, but in 
practice two problems arise. The first is in evaluating the second derivative. If we transform 
a vector of points into Chebyshev coeficient space, use a recurrence scheme to form the 
Chebyshev transform of the derivative, and then transform back to get the derivative of the 
vector, the result is satisfactory. lf, however, the recurrence relation is applied twice in Chebyshev 
space, the resulting second derivative has round-off error problems. When implemented into the 
whole scheme of the solution of the Navier -Stokes equations, this error causes numerical 
instability. However, we found that simply squaring the first-derivative collocation matrix and 
using that to take second derivatives yielded no problems. The second problem is in trying to 
solve the ordinary differential equations (1 5H17) in Chebyshev coefficient space. Apparently, the 
round-off errors are so severe in evaluating the last coefficients of the series that these coefficients 
do  not contribute to the series correctly. Thus, the only place where we were able to use the fast 
Chebyshev transform technique is in the evaluation of the first derivative in the normal direction. 
Therefore, we stayed in real space rather than spectral space when calculating in the normal 
direction. The normal discretization was done with collocation matrices regardless of whether 
a Chebyshev recurrence relation or a collocation matrix was used to take a derivative. The next 
task is to economize the matrix operations needed to discretize (15)+17). 

When collocation of the Chebyshev grid is applied to (15)+17), they assume the following form: 

1 
[Bij-~cljj] = - - - ( Y ~ " S ) ~ ,  

.L where 

c = ( ,; + k: + k $ ) , 
i = O  to N 3  and j = O  to N , ;  

1 
[Bij-cclij](P3"= -~ (&HS)i,  .L 
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i = O  to N 3  and j = O  to N 3 ;  

1 
&l+l ,  [Bij-c I . . ]  w;" = -- 

f, 
W IJ  

where 
c w = k : + k $ ,  

i = O  to N ,  and j = O  to N , .  

Bij  is the square of the first-derivative collocation matrix (ie. second-derivative collocation 
matrix) and I i j  is the identity matrix. These equations have not been subject to boundary 
conditions. To apply them, we bring the outer columns of the collocation matrix multiplied by the 
variable at the boundaries over to the right-hand side with the rest of the known information. The 
outer rows of the collocation matrix are then discarded. Thus, equations (25)-(27) take the 
following form: 

(28) 
1 

[Bij - C I i j ]  qJ?+ = -- (qRHJi  - Bikg;+ 1, 
. fc 

where 

i = l  t o N 3 - l  and j = 1  to N 3 - l ,  

k=O and N 3 ;  

1 
[ B i j - c I i j ] # g + l =  -- (#RHS)i -&k $1' 9 

f c  

where 

where 

i = l  t oN3- l  and j = 1  to N3-1, 

k=O and N 3 .  

Solution of the discretized equations 

Since (28)-(30) are unique for each wave-number pair, and c is a function of wave number, there 
are N1 N 2  sets of N 3  linear systems to solve to get an update on the solution for each time step. 
Solving the linear systems would take on order N 1 N 2 N 3 N 3 N 3  operations for each time step. 
Since typical grids are of order 100 points in each direction, this procedure would require about 
lo1* operations for each time step, a prohibitive number. An alternative scheme was used by 
Gottlieb and OrszagZ6 for a somewhat different application and will be illustrated by application 
to (28). It can be shown that the inverse of the matrix of the linear system, equation (28), can be 
expressed as follows: 
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where 
e jp= eigenvectors of Bji ,  

A,=eigenvalues of Bji ,  

i , j ,  p =  1 to N 3 -  1 .  

Since the eigenvalues and eigenvectors are independent of c, they can be preprocessed and 
stored at negligible expense. Rather than building the inverse itself, a matrix-times-matrix 
operation can be avoided by multiplying, one at a time, the matrix pieces of (31) by the 
right-hand-side vector until the solution vector is attained. This results in a total operation count 
per time step of order N 1 N 2 N 3 N 3 ,  large but tolerable. 

Green's funrtion solution of the normal velocity equation 

One further detail must be mastered before we can march in time through the set of discrete 
equations. No Physical boundary conditions on q5($ at the collocation points 0 and N 3 )  are 
available since q5 is an intermediate variable used to split equation (3) into two parts. However, 
the Neumann condition of the normal velocity at the boundary can be used to constrain q5 on the 
boundary as follows. The continuity equation on the boundaries is given by 

O =  Akgw: + +ik, uL+ +ik2u;+ (32) 

where 

i=o  to N 3 ,  

k = O  and N 3 .  

Since the u and o velocities are known on the boundaries, (32) serves as a Neumann condition 
on w. We must pick q5 on the boundaries so that (32) is satisfied. From (29), (30) and (32) we see 
that 4 at 0 and N 3  affects (32) linearly. Therefore, this effect can be expressed by 

0 = ~ ~ ~ w :  +' + ik, u i  + + ik 2 D"+ k ' = C G k j l  { #;+' } + { b k ) ,  (33) 

where 

G - = discrete Green's function, 

b=b(u;I+',  ~ ! + l ,  w:", &HS), 

i = O  to N3,  

k=O and N 3 ,  j = O  and N 3 .  

The constant part, b, of this linear relationship is a function of the Dirichlet conditions on the 
velocity and &HS. Inversion of the matrix yields the Green's function, G (Kim et d.'). Thus, to 
solve the small linear system in (33), we must extract G and b, then invert B to solve for q5 on the 
boundaries. Equation (34) shows how b is obtained. The divergence on the boundaries gives b, 
when q5 on the boundaries i s  set to zero: 

bk = / ik iW:+'  + ik l k  un+' + ikz $+' Using $;+' = 0, (34) 

where 

i = O  to N3,  

k=O and N3, j = O  and N 3 .  
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Equation (35) shows how G is extracted: 
k g -  - A  k ,  W n + l  , +iklu;+1+ik2v;+1, with6;+'=6,,and ~ ~ " = v ~ + ~ = w ~ " = ~ , , ~ = O ,  (35) 

where 
6,,= unit Kronecker delta (real), 

i=O to N 3 ,  

k,j ,p=OandN,.  

To extract G, calculate the divergence on the boundary with the boundary values of u and u and 
with all values of w and q5RHS set to zero. Then cycle a value of one (with the other zero) through 
the elements of 6 on the boundary, which gives the columns of G. In obtaining G, we 
are setting b to zero and passing the identity matrix through the vector that multiplies G (4 on the 
boundary). 

After G and b are extracted, G is inverted and multiplied by -h to obtain 6 on the boundary. 
Note that G is independent of any variables that change at each time step and can, therefore, be 
precalculated, inverted, and saved once for all time steps. 

The foregoing process solves the fourth-order partial differential equation for w, (3), with the 
correct boundary conditions on w by solving two second-order equations twice, (29) and (30). 
Since the appropriate q5 on the boundary must be determined for each wave-number pair, the 
storage requirement for G is on the order of N , N 2 ,  which is small. The extra computation 
expense is to make an extra pass through (29) and (30). Thus, for every time step we must solve five 
ODES in the normal direction NINz times. 

Discretization of the temperature equation 

The discretization of the temperature field is easier than that of the velocity field. The 
temperature equation, (2), is first time split by the same technique used for the velocity field to 
give (36): 

where 

The constants CI and f i  and the Runge-Kutta step size are the same as those of the velocity field. 
Note that we have treated the quasi-linear convective terms explicitly again since it is not 
computationally feasible to calculate a Jacobian. Equation (36) is then Fourier-transformed in the 
two homogeneous directions with the same DFTs used in the velocity field integration to give 

with T"" on ZD,, (37) 

where 
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Note that, although the symbol did not change, the temperature variable in (37) is complex- 
valued and has been Fourier transformed in the two homogeneous directions, and it is assumed 
that the temperature field is periodic in those directions and has the same periodic lengths as the 
velocity field. The aspect ratio does not appear in the equation since it is built into the wave 
number. The evaluations of the convective terms containing TRHs are completely de-aliased with 
the same technique used for the velocity field. 

Discretization in the normal direction is done with the same collocation scheme used in the 
normal integration of the velocity field. The result is 

where 

c T =  (;+ k:  + k:>; 

i = l  t o N 3 - l  and j = l  toN,-I, 

k = l  and N , .  

The Dirichlet conditions on the temperature at the boundaries are applied by moving the 
known boundary information from the left to the right-hand side of (38), which is then in the same 
form as (28)-(30), so we can use (31) to solve the linear system, (38). This means that the 
eigenvectors and eigenvalues of Bij can be preprocessed and stored and used to solve equation 
(38) for all of the wavenumber pairs to give about NINzN3N3 operations for each time step. 

The total number of operations (ops) for one global step, or three Runge-Kutta substeps is 
given approximately by 

O P S = ~ ( N ~ N ~ [ ~ N ~ N ~  + 12N3 log,(N,)] + 13 N3 [ N 1 ( 1 . 5 N z )  lOg,(l.SNz) 

+ Nz(1.5NI)  log,( lm,)] } . (39) 

The storage requirements for all of the variables is about 12 N ,  N z  N , .  

3. CHOICE OF FLOW PARAMETERS AND GRID SIZE 

The choice of Reynolds number was based partly on considerations of a particular project and 
partly of computational limitations. The value we choose was 180 based on channcl half-width 
and friction velocity, which is the same as that used by Moser and Moin6 and Kim et a1.' with 
a grid a little larger than the size we considered practical for our resources. Those authors argued 
that a Reynolds number of 180 for smooth, infinite, parallel plates is the minimum for consistent, 
self-sustained turbulence, although Lyons et ~ 1 . ~ ~  obtained good results with a Reynolds number 
of 150. The Reynolds number of 180 is equivalent to a Reynolds number of 2800 based on 
bulk-average velocity and channel half-width or 11 200 based on bulk-average velocity and 
4 times the hydraulic radius, which would be the Reynolds number in a round pipe that would 
yield a structurally similar flow near the wall. 

The lengths over which the flow is periodic in the streamwise and spanwise directions is 
governed by the chosen aspect ratios (lengths relative to the channel depth). Since the turbulent 
structures are stretched in the flow direction, it is prudent to stretch the distance between grid 
points in the flow direction relative to that in the spanwise direction. Moser and Moin6 
recommend using aspect ratios such that the domain lengths scaled by the channel half-width are 
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47c, 4x13 and 2 for the streamwise, spanwise and normal directions, and we have chosen the same 
values. In terms of wall units, v/u,, these lengths are 2262+, 753+ and 360+, where the plus sign 
refers to a distance non-dimensionalized by vlu,. 

Kim et aL7 used a grid of (128, 128,65) points (wave numbers) in a simulation of channel flow 
that showed good agreement with experiment for first- and second-order statistics (mean velocity 
profile, intensities and Reynolds stress). They also used a grid of (192, 160, 129) points to achieve 
excellent agreement between their simulation and higher-order statistics such as skewness and 
flatness. We were unable to use a (128, 128, 65) grid because of storage limitations and used 
instead a grid of (96,96,65) points in spcctral space to which 48 zeros were appended in the 
streamwise and spanwise directions to convert to (144, 144, 65) points in physical space. With this 
grid the spacing of the points was 15.7 in the streamwise direction and 5.23' in the spanwise 
direction, while in the normal direction the point nearest the wall was at  0.21+, and the spacing at  
the pipe centre was 8.7. 

4. INITIALIZATION 

The computer time required to arrive at a stationary state depends on how far the initial estimates 
of the variables are from the final state. To conserve computer time, we were fortunate to obtain 
a fully developed turbulent velocity field from the Center for Turbulence Research at  NASA Ames 
Research Center. The Reynolds number was the same as the one we used but their velocity field 
used (128, 128, 129) wave numbers. Their computation had been run for 250 h on a Cray 
X-MP/48 after being initialized with the output from a large eddy model. We interpolated this 
field onto our grid by changing the larger field to spectral space, truncating the global series to the 
desired length, and transforming back. Although the velocity field was at a stationary state in the 
NASA model, it had to come to a new stationary state under our model and grid size. We 
monitored the approach to the new state by calculating several statistics. After about 75 h on the 
Cray X-MP using one processor, the non-dimensional time reached a value of 4.0, which 
corresponds to about 4200 time steps, and we concluded that our field was effectively at its final 
state. Details can be found in Rutledge.I6 

The temperature field was initialized by starting with a profile in the normal direction set to 
zero for all wave-number pairs except for the zero-zero mode. For this mode the Fourier wave 
number in both homogeneous directions is zero, and it is a profile in the normal direction 
obtained from an ensemble average on the temperature field in both homogeneous directions. We 
obtained an approximation to the average temperature profile in the normal direction by splicing 
togcther pieces of eddy-diffusivity models in such a way that the entire profile was infinitely 
differentiable to machine precision. (The spectral technique for integrating the temperature 
equation requires that the temperature field be initialized with functions that are at  least 
64th-order continuous in the normal direction.) 

5. THE DECAY O F  THE FOURIER AND CHEBYSHEV COEFFICIENTS 

The quality of the spatial numerical solution can be judged from the decay of the coefficients of 
the approximating series. For an accurate simulation, the Fourier and Chebyshev coefficients 
should decay rapidly enough with term number so that the last few terms of the series contribute 
negligibly to the sum. The coefficients are displayed in Figures 2-4 in the form of energy spectra. 
The streamwise energy spectra, for example, are functions of the streamwise wave number, k,,  
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where E l ( u i u i )  is the streamwise spectral energy for the velocity in the ith direction, ui is the ith 
direction velocity Fourier-transformed only in the streamwise direction, k l  is the streamwise 
wave number, and U T  is the complex conjugate of ui. 

The spectra decay most rapidly near the channel centre, and so in Figures 2-4we show the nine 
'worst-case' spectra, which occur near the wall; data are shown at z' = 5.39. The E ,  spectra are 
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Figure 2. Spectra of streamwise Fourier coefficients at z+ =539 
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Figure 4. Spectra of Chebyshev coefficients 

averaged in the spanwise direction and over six time samples within one non-dimensional time 
unit. Similarly, the E2 spectra are averaged over time and the streamwise direction. Of these 
spectra, the worst case is El (ww), which decays by a factor of about 60. All other spectra decay by 
more than two orders of magnitude. An upturn at the highest wave numbers is referred to as 
a wavenumber pile up and can be a sign that the length of the series is too short. There is a slight 
upturn in E,(ww) ,  but it is probably not damaging. 

The spectra of the Chebyshev series, shown in Figure 4, are defined by 

where 

E3(uiui) = Chebyshev spectral energy for the ith velocity direction, 
N 3  

ci(xil7 yiz, n)= 1 U i ( ~ ; l r  ~ i 2 > Z i 3 ) T n ( Z i 3 ) r  
i 3 = 0  

T,, = nth-order Chebyshev polynomial. 

The rate of decay of the Chebyshev series is superior to that of the Fourier series even though 
fewer terms are used (64 vs. 96). Even though there is a slight upturn at the high-term numbers, the 
ratio of highest to the lowest term exceed three orders of magnitude even in the worst case. 
Presumably, with more terms the upturn would disappear, but we believe the effect on the 
velocity field would be negligible. 

6. STATISTICS O F  THE VELOCITY FIELD AT STATTONAKY STATE 

Presented here are several comparisons between experimental data and data statistically reduced 
from our simulations. The simulated data are averaged over all spatial points in the homogeneous 
directions and five places in time between 5.175 and 5.215 non-dimensional time units. 
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We have not included a figure of the average streamwise velocity profile because the calcu- 
lations are in almost perfect agreement with the calculations of Kim et aL7 (hereafter refered to as 
KMM). They are also in satisfactory agreement with the experimental data of Eckelmann’* for 
his Reynolds numbers [(u,G/v] of 143 and 210, which bracket our value of 180, provided those 
data are rescaled by increasing Eckelmann’s value of u, by 6% for reasons noted by KMM. 
Eckelmann’s data were taken across the width of a channel at a position close to the spanwise 
centre of the channel, which had an effective aspect ratio of about 7. (The actual aspect ratio was 
3.9, but the upper surface, which was normal to the spanwise direction, was free and affected the 
flow more like a channel centre than a wall.) Hence, his data would be a good match to the data in 
a channel of infinite aspect ratio. It should be noted that y + = 36 occurs at y/6 = 0.2. Thus, since 
the law of the wall is inaccurate for y/6>0.2, while the velocity defect law is not valid for 
y +  < -36, there is no region where the two laws overlap and, therefore, there should be no 
significant range in which the logarithmic mean velocity profile is e~pected;’~ the Reynolds 
number is too low for the existence of a significant logarithmic region. 

Figures 5 and 6 compare spanwise and normal near-wall turbulence intensities defined by 
u;= (uf)”’ with the calculations of KMM and of Lyons et a2.’ (hereafter refered to as LHM), and 
experimental data of Eckelmann2’ and Kreplin and Eckelmann.” The agreement among all 
studies for the streamwise intensity is quite good and so are not shown. There is less agreement, 
however, in the spanwise and normal directions. Our normal intensities fall significantly below 
those of Eckelmann2’ and Kreplin and Eckelmannzg but are in good agreement with the 
calculations of KMM and LHM. The calculations of LHM were shown in their paper to be in 
near perfect agreement with the data of Nieder~chulte.~’ (Calculations for z+  > 40 are not shown 
since the proper scaling is intensity vs. z/6 and would require another figure.) 

The spanwise intensity is the most interesting. Our calculations fall well below the data of 
Eckelmann in the range 4 <z f  < 15, although, outside that range, they are in good agreement. 
They also fall a little above the calculations of LHM, made with four grids of increasing size, the 
largest being (128, 128, 65) in physical space. They concluded that the solutions of the spanwise 
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Figure 5. Spanwise turbulence intensity profile 
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Figure 7. Reynolds stress profile 

intensity had not coverged as a function of grid resolution. Our data with a grid of (144, 144,65) 
support that conjecture. 

Figure 7 shows the uw Reynolds stress in the wall region together with Eckelmann's data at 
Reynolds number of both 143 and 210. The agreement with KMM is good all the way to the 
channel centre, but there is some disagreement with the data of Eckelmann, 

Calculations for the steamwise skewness, Z / ( U ~ ) ~ ,  and streamwise flatness, u ~ / ( u : ) ~  agree well 
with the data of Eckelmannz8 and Barlow and Johnston3' and the calculations of KMM and 

shown. 
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LHM and so are not shown. Figure 8 compares our calculations of normal skewness to other 
data. In the region z+ <40 our calculations agree well with those of KMM but differ somewhat 
from the others. For z+ >40 the agreement among all of the data is good. As noted by KMM, the 
skewness for the spanwise velocity, u, should be zero whereas ours has non-zero but small values. 

Our calculations of normal flatness agree well with those of KMM and LHM throughout the 
range z + > 2. It is disturbing, however, that all three calculations disagree significantly with the 
carefully obtained data of Kreplin and E~ke lmann*~  and Barlow and Johnston31 in the region 
2 <z+ < 10, as noted in Figure 9. 
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Figure 8. Normal skewness profile near the wall 

Figure 9. Normal flatness profile near the wall 
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The foregoing comparisons provide evidence that our Navier-Stokes solver is indeed simula- 
ting turbulent flow in a channel. While the extent of the calculations is not as complete as was 
done by KMM, we believe that it is adequate for our purposes and is the best possible with the 
resources available. 

7. TWO-POINT CORRELATIONS 

Two-point correlations are important because they can provide insight into the structures present 
in the flow, and they are a severe test of a turbulent flow calculation. Two-point correlations are 
the time or spatially averaged products of two dependent variables separated by a spatial vector. 
The streamwise two-point correlation for the streamwise velocity is defined in (42), and is 
a function of the separation vector of the points, which for this correlation lies on the x-axis, and 
the location in the normal direction, z. 

where 

R1 (uu) = streamwise two-point correlation for streamwise velocity, 

u = fluctuating part of the streamwise velocity, 

5 = streamwise separation between points, 
- 

=average in streamwise and spanwise directions and time. 

Similar correlations may be defined for other combinations of velocity components, temper- 
ature, or velocity and temperature, and for other directions of the spatial vector between the 
points. The correlations are generally normalized by the root-mean-square values of the two 
dependent variables, i.e. the correlations equal one for zero separation of the points. All of our 
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Figure 10. Streamwise two-point correlations at z+ = 539 
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correlations were averaged over six samples in time from 4.27 to 5.215 time units and twelve 
samples in the homogeneous directions in space. 

Figures 10 and 11 show the three streamwise and spanwise correlations close to the wall at 
z+=5.39. The minima of the spanwise correlations, R2(uu) at ~ ' ~ 5 0 ,  R2(uu) at ~ ' ~ 6 0  and 
Rz(ww) at z +  z.25 agree well with position and amplitude of the R2 correlations of KMM, who 
noted that the minimum in R2(uu) gives an estimate of the mean separation between high- and 
low-speed fluid. Thus, the mean spacing between wall streaks would be about 100 wall units, 
which is consistent with the spacing shown later in Figure 19. Our curves of R2(uu) and R2(00) 
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Figure 11. Spanwise two-point correlations at z+ = 5-39 
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Figure 12. Streamwise two-point correlations at z +  = 144.8 
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Figure 13. Spanwise two-point correlation at Z' = 144.8 

show a second minimum at about z +  M 220 or z/S M 1.2, which do not appear in the R2 spectra of 
KMM. 

Figures 12 and 13 show the streamwise and spanwise correlations near the channel centre at 
z+ = 144-8. These correlations as well as those in Figure 10 do not decay to a satisfactorily low 
value over half of the periodic domain, as they should, although the deviations from zero are 
small. The reasons for this are not certain. Presumably, the decay would be improved with longer 
periodic lengths or more Fourier modes or more samples in the averages. The correlations of 
KMM are better, and they used the same periodic length but more modes and sampled over 
about ten times as many samples. 

8. THE TEMPERATURE FIELD 

Our original intention was to calculate the temperature field for a fluid with a Prandtl number 7. 
However, after computing for 065 time units, the time rate of change of several statistical 
measures of the temperature field was still unacceptably large and was decreasing only slowly. 
Therefore, rather than pursue a probable waste of computational resources, the Prandtl number 
was changed to 4. This change helped, but the rate of change was still very small. Moreover, a plot 
of the E3(TT) spectrum of the temperature field Chebyshev coefficients after 3.08 time units 
showed a decay of a ratio of the coefficients of only 25 and a significant upturn for the highest 
coefficients. Finally, therefore, we changed the Prandtl number to 0.72, the approximate value for 
air at room temperature. After computing for 5 time units, the rates of change of all terms in the 
averaged energy equation were very small, and we concluded that the temperature field had 
reached a stationary state. 

An indication of the suitability of our spatial approximations is the decay of the spectra of the 
temperature Fourier and Chebyshev coefficients, E,(TT),  E,(TT) and E3(TT),  in a manner 
similar to that done for the velocity field. The results were slightly better than those for the 
velocity field, and the smallest ratio of high to low coefficients in one spectra was about 180. 
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Figure 14. Terms of equation (43) 

The time-averaged equation for the transport of T2/2 ,  the thermal equivalent of the mean 
kinetic energy of the velocity, can be written 

o=s1 +sz +s3, 

where 

(43) 

1 a -2  
S I = - - T ,  

2 a t  

and Figure 14 shows a plot of the three terms as functions of the normal co-ordinate, averaged in 
both homogeneous directions. The profile of S1 is close to zero for the entire span, indicating that 
a stationary state had been achieved. The other two terms represent turbulent and molecular 
diffusion in the normal direction. The profiles show that the average and fluctuating temperature 
fields interact significantly with each other only in a boundary layer about 20% of the channel 
half-width or about 35 wall units. 

The temperature and heat flux profiles averaged over the homogeneous directions at 5.215 time 
units are shown in Figure 15. The scale for the heat flux is expanded. The heat flux should, of 
course, be constant. The fact that it deviates about 13% from its average value suggests either that 
the temperature field is not at a true stationary state or that averaging over time as well as space is 
needed. However, we were unable to carry out computations further in time, 

Figure 14 shows the profile of the mean-square temperature fluctuation, (8'). 
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Figure 16. Mean-square temperature fluctuation profile 

Functions of practical interest are the eddy viscosity and eddy diffusivity, defined in dimen- 
sional units by 

- 
z / p  = ( v  + vr ) (dU/az )  or - uv = v,(aU/az) (44) 

and 

q / p c , =  - ( a  +@,)(a ~ / a z )  = - a( l+  pra,/v)(aT/az) or -3 = a,(aT/az),  (45) 

where v,  and a, are the eddy or turbulent kinematic viscosity and eddy thermal diffusivity. 
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Figure 17. Eddy-diffusivity profile 

Figure 17 shows the simulated eddy diffusivity in the wall region together with calculations of 
Brooke and Hanratty3’ and the empirical expression of Notter and S l e i ~ h e r ~ ~  for z+ <45. Of 
special interest is the slope and position of the line in the limit as z +  + 0. As unlikely as it sounds, 
our calculations agree to two significant figures with the empirical equation in this limit; i.e. 
a,/v=04)0090 z f3 .  This disagrees with the value of a,/v=0-000775 z + ~  found by LHM. However, 
Prof. Hanratty (see Reference 32) supplied the authors with revised calculations of aJv ,  and the 
results are shown by the line labeled ‘Brooke’. Apparently, the limiting behaviour of this line is 
given approximately by a,/v = O-OOo87 z + ~ .  The small difference cannot be seen on the figure. In 
any case, the behaviour of ar/v is of practical importance in the calculation of heat transfer by 
eddy diffusivity models. 

9. FLOW VISUALIZATION 

From laboratory observations of smoke or fog one can speculate about structures in the velocity 
field. Similarly, we can use temperature contour plots to get some idea of the structures that are 
present in the velocity field. The temperature field also experiences conduction, which complicates 
interpretation. 

The top third of Figure 18 shows a streamwise-normal contour plot of the temperature field at 
a fixed value of y and at 4-895 non-dimensional time units. A profile of the streamwise average 
velocity has been placed at the same vertical position for reference. Note that all distances are in 
wall units and that the scale has been expanded by a factor of 2 in the normal direction. In the 
figure, a box has been placed around a structure of interest. The central and bottom thirds of the 
figure show temperature fields similar to the top third but at times 4-935 and 4-975. During each 
of the 0.04 time intervals between the plots, fluid having bulk average velocity would have moved 
112 wall units, Undistorted boxes have been placed on the plots at intervals of 11 2 wall units so as 
to follow an element of fluid ejected downward. At the top this ejection is seen to increase the 
thickness of the warm layer near the wall. In the central plot the ejected fluid further undermines 
the layer near the wall, and in the bottom subfigure the ejection has been further convected 
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downstream, and the velocity profile has tilted the top of the structure to the left. Events such as 
this obviously augment the heat transfer rate. The interested reader might compare these plots 
with photographs of flow visualization in a turbulent boundary layer in the book by Van Dyke34 
(Figure 160 due to F a l ~ o ~ ~ )  recalling that the figures here must be compressed by a factor of two 
in the spanwise direction. 

In a similar manner, we have plotted contours of the temperature field with the spanwise and 
normal directions as the abscissa and ordinate, respectively. One such plot, for example, was at 
X' =0  and at a time of 5.025. Another plot was then made at a time of 5.049, at which time the 
fluid of bulk average velocity would have been swept to x +  = 70-7, the location of the plot. A third 
plot was at a time of 5.073 and at x+ = 141.4. In this way, structures were identified and followed. 
From such observations we infer that the time required for the break-up of fluid structures is 
typically about 0.1 6 non-dimensional time units or about 30 time units based on wall shear stress 
and kinematic viscosity, which agrees with that observed by F a l ~ o . ~ ~  

Finally, we present a contour plot of the temperature field at a plane parallel to the boundary. 
Figure 19 is at 5.39 wall units above the solid surface. C a n t ~ e l l ~ ~  concludes that the length scale 
of the structures, the distance between streaks, at this level is about 80 wall units, and there is 
a marker beside the plot that shows this length. Although there are only a few structures present, 
80 appears to be a reasonable length scale. Again, it is instructive to compare these plots with the 
photograph of the sublayer structure at 9-14 wall units shown by Van Dyke.34 

The plots shown here are but a small sample of the many hundreds that could be made of our 
temperature field. They illustrate, however, the potential power of simulation to reveal informa- 
tion about structures in turbulent flow. 

10. CONCLUSIONS 

A computer program has been developed that successfully models the major characteristics of 
turbulent Row and heat transfer in a two-dimensional channel at low Reynolds numbers. The 
program uses no approximations aside from periodic domains in the streamwise and spanwise 
directions, a finite number of Fourier modes in those directions, and a finite number of Chebyshev 
polynomials in the normal direction. The program lays the foundation for the investigation of 
heat transfer with wavy boundaries, which forms Part I1 of this study. 
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